pcr Documentation
Release 0.6.0

Stefano Palazzo

January 13, 2014

Contents

9

AES

CBC

Diffie-Hellman

HOTP (Two-Factor Authentication)
Maths

PBKDF2

PKCS7

RC4

RFC 3526

10 XTEA

11 Indices and tables

11

13

15

17

19

21

CHAPTER 1

AES

Advanced Encryption Standard - Block Cipher

class pcr.aes.AES

static rotate (word)
rotate a sequence of bytes eight bits to the left

static xor (a, b)
bitwise xor on equal length bytearrays

pcr Documentation, Release 0.6.0

2 Chapter 1. AES

CHAPTER 2

CBC

Cipher Block Chaining Mode of Operation

class pcr.cbc.CBC (BlockCipher, iv)

decrypt (data, key)
encrypt (data, key)

static xor (a, b)

pcr Documentation, Release 0.6.0

4 Chapter 2. CBC

CHAPTER 3

Diffie-Hellman

Diffie-Hellman Key Exchange

class pcr.diffie_hellman.DiffieHellman (prime, generator, rand_max)

get_public_key ()
get_shared_secret (yb)

pcr Documentation, Release 0.6.0

6 Chapter 3. Diffie-Hellman

CHAPTER 4

HOTP (Two-Factor Authentication)

Time OTP implementation for 2-factor authentication
pcr.hotp.get_token (secret, i=None)

pcr.hotp.new_secret ()

pcr Documentation, Release 0.6.0

8 Chapter 4. HOTP (Two-Factor Authentication)

CHAPTER 5

Maths

Various mathematical function used in public key cryptography

pcr.

pcr.

pcr.

pcr.

pcr

maths.is_prime (n, k=64)
Test whether n is prime using the probabilistic Miller-Rabin primality test. If n is composite, then this test will
declare it to be probably prime with a probability of at most 4**-k.

To be on the safe side, a value of k=64 for integers up to 3072 bits is recommended (error probability = 2#%-128).
If the function is used for RSA or DSA, NIST recommends some values in FIPS PUB 186-3:

<http://csrc.nist.gov/publications/fips/fips 186-3/fips_186-3.pdf>
Do not use this function for small numbers.

maths.get_prime (bits, k=64)
Return a random prime up to a certain length

This function uses random.SystemRandom.

maths.phi (n,p, q)
Euler’s totient function for n which can be written as pq

This is the number of k in the range 0 <=k <= n where gcd(n, k) is = 1 or, in other words, the number of integers
k <= n that are relatively prime to n.

maths.mult_inv (a, b)
Calculate the multiplicative inverse a**-1 % b

This function works for n >= 5 where n is prime.

.maths.make_rsa_keys (bits=2048, e=65537, k=64)

Create RSA key pair

Returns n, e, d, where (n, e) is the public key and (n, e, d) is the private key (and k is the number of rounds used
in the Miller-Rabin primality test).

http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf

pcr Documentation, Release 0.6.0

10 Chapter 5. Maths

CHAPTER 6

PBKDF2

Password based key-derivation function - PBKDF2

pcr.pbkdf2.pbkd£2 (digestmod, password, salt, count, dk_length)
PBKDF2, from PKCS #5 v2.0: http://tools.ietf.org/html/rfc2898
For proper usage, see NIST Special Publication 800-132: http://csrc.nist.gov/publications/PubsSPs.html
The arguments for this function are:

digestmod a crypographic hash constructor, such as hashlib.sha256 which will be used as an argu-
ment to the hmac function. Note that the performance difference between shal and sha256 is
not very big. New applications should choose sha256 or better.

password The arbitrary-length password (passphrase) (bytes)

salt A bunch of random bytes, generated using a cryptographically strong random number generator
(such as os.urandom()). NIST recommend the salt be _at least_ 128bits (16 bytes) long.

count The iteration count. Set this value as large as you can tolerate. NIST recommend that the
absolute minimum value be 1000. However, it should generally be in the range of tens of thou-
sands, or however many cause about a half-second delay to the user.

dk_length The lenght of the desired key in bytes. This doesn’t need to be the same size as the hash
functions digest size, but it makes sense to use a larger digest hash function if your key size is
large.

11

http://tools.ietf.org/html/rfc2898
http://csrc.nist.gov/publications/PubsSPs.html

pcr Documentation, Release 0.6.0

12 Chapter 6. PBKDF2

CHAPTER 7

PKCS7

PKCS7 Padding for Block Cipher Modes
pcr.pkcs7.pad (data, block_size)
pcr.pkcs7.unpad (data)
pcr.pkcs7.check_padding (data, block_size)

13

pcr Documentation, Release 0.6.0

14 Chapter 7. PKCS7

CHAPTER 8

RC4

RC4 stream cipher
pcr.rcd.key_schedule (key)

pcr.rcd.key_stream(s)

15

pcr Documentation, Release 0.6.0

16 Chapter 8. RC4

CHAPTER 9

RFC 3526

Groups for Diffie-Hellman as defined by RFC 3526
To get access to the 2048 bit group, for example, type:

>>> prime, generator = rfc3526.groups[2048]

See http://tools.ietf.org/html/rfc3526 for notes on usage.

17

http://tools.ietf.org/html/rfc3526

pcr Documentation, Release 0.6.0

18 Chapter 9. RFC 3526

CHAPTER 10

XTEA

XTEA block cipher (32 rounds)
pcr.xtea.encrypt (block, key)

pcr.xtea.decrypt (block, key)

19

pcr Documentation, Release 0.6.0

20 Chapter 10. XTEA

CHAPTER 11

Indices and tables

* genindex
* modindex

e search

21

pcr Documentation, Release 0.6.0

22 Chapter 11. Indices and tables

Python Module Index

pcr.aes, ??

pcr.cbc, ??
pcr.diffie_hellman, ??
pcr.hotp, ??
pcr.maths, ??
pcr.pbkdf2, ??
pcr.pkcs7,??
pcr.rc4,??
pcr.rfc3526,??
pcr.xtea, ??

23

	AES
	CBC
	Diffie-Hellman
	HOTP (Two-Factor Authentication)
	Maths
	PBKDF2
	PKCS7
	RC4
	RFC 3526
	XTEA
	Indices and tables

